Tell whether the sequence is arithmetic. If not, explain why.

- 1. $1, 0, -1, -2, -3, \dots$
- **2**. 20, 10, 5, 2.5, 1.25, ...
- **3**. 8, 13, 19, 26, 33, ...

Find the first 4 terms for the following arithmetic sequences.

4. $a_1 = 10$, d = -4

5. $a_n = -6 + 3n$

For the following arithmetic sequences, find a_1 and d.

6. 7, 10, 13, 16, ...

7. 2.6, -1.4, -5.4, ...

 $a_1 =$ ______ d =______

 $a_1 = d =$

Write a rule for the *n*th term of the arithmetic sequence. $a_n = a_1 + d(n-1)$

8. $a_1 = 6$, d = -2

9. 2,6,10,14

10. $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}$

Find the sum of the arithmetic series. $s_n = \frac{n}{2}(a_1 + a_n)$

- **11.** $a_1 = 42$, $a_n = 31$, n = 16
- **12.** $a_1 = 40$, d = -3, n = 14
- 13. 2+6+10+...+58 (hint: find n first using $a_n = a_1 + d(n-1)$)

Tell whether the sec		- If	
Tell whether the sec	illence is deometri	c. It not. ex	kniain wny.
	1440	oo., o.	٠٣٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠

14.
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{3}{3}$, $\frac{4}{3}$, ...

Find the first four terms of each geometric sequence.

16.
$$a_1 = 3$$
, $r = -2$

17.
$$a_n = 36 \left(\frac{1}{2}\right)^{n-1}$$

Write a rule for the *n*th term of the geometric sequence. $a_n = a_1(r)^{n-1}$

18.
$$a_1 = 9$$
, $r = -3$.

Find the indicated term. $a_n = a_1(r)^{n-1}$

21.
$$a_2 = 200$$
, $r = 5$ Find a_9 (hint: find a_1 first)

22.
$$a_2 = -7$$
, $r = \frac{1}{2}$ Find $n = 5$. (hint: find a_1 first)

Find the sum of the geometric series. $s_n = \frac{a_1(1-(r)^n)}{(1-r)}$

23.
$$a_1 = \frac{1}{3}$$
, $r = 3$, $n = 10$

24.
$$10+1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}$$

Find $s_{\scriptscriptstyle 5}$.

25.	10+2+	2	2	2
		5	25	$\frac{1}{125}$

26. 2+4+8+...

Find $s_{\scriptscriptstyle 5}$.

Find the sum of the following infinite geometric series. $s_n = \frac{a_1}{\left(1-r\right)}$... remember -1 < r < 1

27.
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27}$$
...

28.
$$\sum_{1}^{\infty} 3 \left(\frac{1}{4}\right)^{n-1} =$$

29.
$$\sum_{1}^{\infty} 2(3)^{n-1} =$$

30. You drop a ball from a basketball rim (10ft above the ground), each time the ball hits the ground it bounces $\frac{3}{4}$ the previous height. How far does the ball travel if it bounces 15 times?